21 research outputs found

    Pointwise best approximation results for Galerkin finite element solutions of parabolic problems

    Full text link
    In this paper we establish a best approximation property of fully discrete Galerkin finite element solutions of second order parabolic problems on convex polygonal and polyhedral domains in the L∞L^\infty norm. The discretization method uses of continuous Lagrange finite elements in space and discontinuous Galerkin methods in time of an arbitrary order. The method of proof differs from the established fully discrete error estimate techniques and for the first time allows to obtain such results in three space dimensions. It uses elliptic results, discrete resolvent estimates in weighted norms, and the discrete maximal parabolic regularity for discontinuous Galerkin methods established by the authors in [16]. In addition, the proof does not require any relationship between spatial mesh sizes and time steps. We also establish a local best approximation property that shows a more local behavior of the error at a given point

    Numerical Analysis of Sparse Initial Data Identification for Parabolic Problems

    Full text link
    In this paper we consider a problem of initial data identification from the final time observation for homogeneous parabolic problems. It is well-known that such problems are exponentially ill-posed due to the strong smoothing property of parabolic equations. We are interested in a situation when the initial data we intend to recover is known to be sparse, i.e. its support has Lebesgue measure zero. We formulate the problem as an optimal control problem and incorporate the information on the sparsity of the unknown initial data into the structure of the objective functional. In particular, we are looking for the control variable in the space of regular Borel measures and use the corresponding norm as a regularization term in the objective functional. This leads to a convex but non-smooth optimization problem. For the discretization we use continuous piecewise linear finite elements in space and discontinuous Galerkin finite elements of arbitrary degree in time. For the general case we establish error estimates for the state variable. Under a certain structural assumption, we show that the control variable consists of a finite linear combination of Dirac measures. For this case we obtain error estimates for the locations of Dirac measures as well as for the corresponding coefficients. The key to the numerical analysis are the sharp smoothing type pointwise finite element error estimates for homogeneous parabolic problems, which are of independent interest. Moreover, we discuss an efficient algorithmic approach to the problem and show several numerical experiments illustrating our theoretical results.Comment: 43 pages, 10 figure

    Fully Discrete Pointwise Smoothing Error Estimates for Measure Valued Initial Data

    Full text link
    In this paper we analyze a homogeneous parabolic problem with initial data in the space of regular Borel measures. The problem is discretized in time with a discontinuous Galerkin scheme of arbitrary degree and in space with continuous finite elements of orders one or two. We show parabolic smoothing results for the continuous, semidiscrete and fully discrete problems. Our main results are interior L∞L^\infty error estimates for the evaluation at the endtime, in cases where the initial data is supported in a subdomain. In order to obtain these, we additionally show interior L∞L^\infty error estimates for L2L^2 initial data and quadratic finite elements, which extends the corresponding result previously established by the authors for linear finite elements

    Local energy estimates for the fractional Laplacian

    Full text link
    The integral fractional Laplacian of order s∈(0,1)s \in (0,1) is a nonlocal operator. It is known that solutions to the Dirichlet problem involving such an operator exhibit an algebraic boundary singularity regardless of the domain regularity. This, in turn, deteriorates the global regularity of solutions and as a result the global convergence rate of the numerical solutions. For finite element discretizations, we derive local error estimates in the HsH^s-seminorm and show optimal convergence rates in the interior of the domain by only assuming meshes to be shape-regular. These estimates quantify the fact that the reduced approximation error is concentrated near the boundary of the domain. We illustrate our theoretical results with several numerical examples

    Planar Double Bubbles on Flat Walls

    Get PDF
    In this paper, we investigate some properties of planar soap bubbles on a straight wall with a single corner. We show that when a wall has a single corner and a bubble consists of two connected regions, the perimeter minimizing bubble must be one of the types, two concentric circular arcs or a truncated standard double bubble, depending on the angle of the corner and areas of the regions
    corecore